Archive for the ‘Our Tools’ Category

by

In:In the Shop, News, Our Tools

Comments Off on One Last Router Update

The Return of the Router

It’s been a long time coming, but we’re finally filling up the pipeline and getting back into production with our 2500 Router Plane.  After two years and three foundries we’ve got everything to a point where we can move forward with a low rate of scrap and high rate of confidence.  Routers may contain minor pitting on the sole of the tool, but it ranges from very minor to none at all.

Examples of the pin-prick type pitting we see on some routers.

A close-up look at the sole with pitting present.

Going forward, we’re ordering much larger quantities of raw castings from the foundry, but it’s going to take a little time to get those in and start the regular routine of machining parts, assembling, and posting on the site.  Another thing we want to make people aware of is a slight change in the router options and pricing.  To date, we’ve only sold routers with polished edges.  This is a classy look that we want to continue to offer, but for a variety of reasons it’s more costly than we initially expected.  Therefore, in order for us to continue offering polished routers we need to raise the price from $290 to $315.  As an alternative, however, we are also going to be offering a matte version of the router for $285.  The routers are completely identical in every way with the exception of the polished edges.

The WMT 2500 Matte Router

The polished vs. matte router

A more detailed shot of the polished vs. matte finish router

Finally, we want to sincerely thank everyone for their patience and support (be it via emails, Instagram posts and comments, or conversing with us directly) over the past few years while the development was going on followed by all the casting issues.  We know it’s been a long wait.  No one wants to get these out into the hands of woodworkers more than we do and we’re extremely excited to finally make that a reality.

-WMT

In our previous post, we discussed using other manufacturer’s cutters in our 2500 router plane.  Why would you want to use another manufacturer’s cutter?  Because right now we only have one size, 1/2″ square tipped.  We may offer a spear point, possibly one other size like 5/8″, but that may be a little while and we currently have no plans to offer the wide range of sizes companies like Veritas produce.  Fortunately, it is possible to use many other cutters in our router… unfortunately it requires a permanent modification to that cutter: adding a secondary notch.

Adding the second notch isn’t hard, but take your time and check the fit often.

The reason for this second notch is simple; without it you won’t be able to take a cut less than 1/2″-1″ deep depending on the cutter you’re using.  That’s not good considering almost any cut you’d want to make with a narrow blade will tend to be very shallow.  (This is usually where people ask why we didn’t just make the threaded posts taller like other router planes… it’s because the 2500’s cutter can move to the side positions and a taller post would stick up through the handles, so they have to be somewhat short.  This is true of the original Preston design as well.)  So, by adding a secondary notch you can use many other manufacturer’s blades.  Lie-Nielsen is a no-go because they use a square shank, but any diamond shank measuring around 3/8″ square should fit.  To make this notch you will likely need to use a Dremel tool with a grinding wheel which can be further refined with diamond files if you have them.  Standard files won’t work (at least not on Veritas’ cutters) as the shanks are heat treated.  Work slowly, keep the notch as square as possible, and check your progress frequently.

A variety of cutters, from left to right: a vintage Record, an unaltered Veritas, the WMT cutter, and finally a modified Veritas.

The notch is technically 0.155″ tall and 0.130″ deep, but that doesn’t really matter.  What matters is making it just tall enough to fit around the depth adjustment nut and deep enough that it won’t bottom out on the adjustment nut.  There should be clearance all the way around the nut when installed and clamped down.  The position of the notch is about 0.8″ below the top notch, but that’s on the Veritas cutter.  It may differ on other cutters based on how tall the shank is.  Basically make the notch such that the adjustment nut keeps the cutting edge of the blade slightly above the sole of the tool (so no cutting occurs) when it’s at it’s maximum height.  Then as you lower the nut, you start to take a cut which naturally gets thicker as the nut drives the blade lower and lower.  When you bottom the nut out on the body of the tool, you should be able to move back to the upper notch and continue.  It’s a good idea to layout the notch and check all these positions before actually cutting the blade.

Location of the second notch, just under 13/16″ below the upper notch for a Veritas cutter.

This vintage Record cutter would also work well in the WMT 2500 router.

Now for a few important notes, disclaimers, etc.  The most obvious thing to state here is you’re modifying these cutters at your own risk.  Second, the Veritas cutters neck-down on the shank width fairly high up which means you aren’t getting the usual amount of support for the cutter when it’s clamped in the tool.  As a result, you may find it doesn’t align perfectly straight every time or can shift if pushed on hard enough.  For me, this has been a minor inconvenience at the most.  I make sure the blade is straight as I clamp it in place, if it’s not I simply turn it slightly with my fingers until it looks good, then clamp it down.  At that point it shouldn’t shift.  Yes, it’s possible if you push on it sideways with high force, but small blades are typically only going to see light forces and usually take them head on, not side ways.  Finally, you obviously can’t rotate the cutter 90 deg in the side positions simply by adding a notch.  This is true, but I would ask why would you want to?  Smaller cutters are generally for smaller work so using it in the standard middle position is ideal.  For larger sweeping cuts where the 90 deg rotation is desirable, use our cutter.

Note the narrowing effect of the Veritas cutter.

This is roughly the starting point for the blade where a flush cut would be taken. Notice how there isn’t a lot of supporting material on the shank to align the cutter in the V-groove.

The narrow cutter installed with the added notch. Not too shabby.

And that’s all there is to it.  A small change to cutters many of you probably already own or can purchase at a reasonable price and routing in any sized area becomes nbd (that’s “no big deal” folks).

-WMT

It’s been several months since the last router-related blog post, we were busy finalizing the prototypes and preparing for two Lie-Nielsen events we just wrapped up in Philly and Cinci.  So a quick status on the tools: pre-orders are now available on our site as most of you know already and we’re just waiting on our final pattern changes to come in so we can place our production order at the foundry.  We will soon be finishing our cutter prototype and ramping up production on everything else.  Tools are set to begin shipping in June.

Now for the overview of blade positioning in the 2500 router.  This is by far the most distinguishing feature of the 2500 when compared to the #71 that Stanley made so popular.  With the 71, the blade mounts in the center and can, in certain versions of the tool, be mounted on the back of the center post to give an open throat or bullnose style setup.  Preston’s 2500P could mount the blade in four locations: standard closed throat, reverse open throat (or bullnose), inboard of the right-hand post, and outboard of the left-hand post.  When mounted on the left or right-hand post, the cutter could only face to the left, perpendicular to the standard direction of cutting.  This allowed the tool to be pushed sideways, presumably for working on narrower edges or in situations where a short-wide sole interfered with something on the work piece but and long-narrow sole did not.

blade in the standard closed-throat position

Blade in open throat position

Inboard position on right-hand post

Outboard position on left-hand post

The WMT 2500 router maintains the same four blade positions, but we’ve added the ability to rotate the cutter in 90 deg increments when positioned on the left or right-hand posts.  This allows the user to hang to tool over an edge and make sweeping cuts, such as when working with tenons.  Many woodworkers have done this with the 71, but you can only go out about 1.5″ before the tool becomes unstable.  Then the standard practice is to support the other end of the tool with a block of wood that matches the height of your work piece so the tool doesn’t tip… of course problems arise if the support block isn’t exactly the same thickness of your work piece.  You also have to take the time to get a piece of scrap and size it accordingly.  With the 2500, you can simply move the blade to the side position, rotate the cutter 90 deg, and hanging the tool out 5″ or more is no problem.

Cleaning up a large tenon with the cutter rotated in the outboard position.  Note how well the tool is supported on the work piece despite the fact that this tenon is over 2.5″ long.

Before wrapping this up there are a few details I’d like to point out.  First is simply that the cutter shown in these pictures is not our production design.  We are still finishing the prototype and will cover that in more detail once it’s ready.  Second is that the minimum depth of cut is limited when the blade is in the outer post positions AND rotated 90 deg.  The tip of the cutter needs to stick down almost 3/16″ so that the top of the cutter clears the sole of the tool.  At first glance you might think, “Why not machine a pocket into the body of the tool that the cutter recess into?” And that’s a fair question.  Here’s why we left it alone.  Machining into the sole that deep and that wide breaks through the inner corner of the casting and looks awful.  Adding more material in that area to prevent this also looks confusing and poorly designed.  Next is cost.  Milling a pocket in the side of the tool would require another setup and more time which means more money.  But the final and most important reason for not bringing the cutter higher into the body is because it really didn’t seem necessary.  Small shoulders (less than 3/16″ deep) are typically found on smaller scale work where the tenons don’t stick out very far, simply use the tool in its normal configuration.  Long tenons, where you’d want to move the blade out and overhang the work piece quite a distance, are typically found on larger scale work which means the shoulder will generally be 1/4″ deep or more and the minimum depth of cut won’t pose any problems.

Until next time, -WMT

by

In:Our Tools

Comments Off on WMT Router Plane- Securing the Blade

Securing the blade at any given position in a router plane is a simple but critical task the tool must perform.  It should be easy, fast, and require no tools as it will be adjusted often.  It also needs to hold the blade securely so it doesn’t shift during use.  To accomplish these goals a few basic elements of the tool need to be understood.  As far as I know, all metal-bodied router planes secure their blades using one of two methods: either using a thumb screw to tighten down a blade-locking collar (typically on larger planes) or by driving a screw directly against the blade shank itself to clamp it against the body of the tool (common on smaller scale planes).  Note that wooden-bodied routers often use a wedge to lock the blade.

Thumb screw behind the tool pulls the collar tight against the blade shank, clamping it to the body.

Next is the geometry of the blade shank itself: round, diamond, and square.

Top view of the three typical shank configurations.

A round shank allows the blade to be positioned at any angle (which is rarely, if ever, necessary), but it can rotate unexpectedly during use which is completely undesirable.  It’s the cheapest method of manufacturing, however, as it requires only a simple hole in the body with a screw running into the side of the shank to lock it down.  And while this isn’t typically seen on larger tools which see much higher cutting forces in use, it does appear on many small scale router planes where the reduced force is usually not a problem and the blade won’t spin in the body… much.  If you are having trouble with a round shank that spins, scuff up the sides of the shank along its length with course sandpaper, that will typically do the trick.

This small router plane from Record uses a round shank secured with a screw.

The Diamond shank (where the shank face is rotated 45 deg to the cutting edge) is the most common configuration for large router planes for two reasons.  First, the non-roundness of the body means it won’t rotate during use.  Second, the diamond, which gets drawn into a V-notch in the body, is self centering and self aligning.  It can’t rotate, tilt, or shift side to side.

Veritas, like Stanley, Record, and Millers Falls, uses the Diamond configuration for its blade shank.

The only downside is that when the collar is loosened so the depth of cut can be adjusted, the collar tends to fall down the body, sometimes binding on the blade making the adjustment a bit of a headache.  Modern manufacturers have resolved this in two ways.  Veritas uses a spring-loaded collar so that while the clamping pressure is removed during depth adjustments, there is enough pressure to hold the collar where it belongs and it functions very well.  Lie-Nielsen did away with the collar entirely, opting to apply pressure to the shank directly with a brass screw which again, works perfectly.  Preston fixed their collar problem by trapping the collar in position with a locating pin which is incorporated into the collar locking screw itself.

Notice how the tip of the collar locking screw (collar removed for visibility) is essentially a pin which locates in a hole in the body. This means when pressure is removed from the blade for depth of cut adjustments the collar won’t flop around or bind up on the shank as it’s moving.

The Square configuration (where the shank face is parallel to the cutting edge) is rare.  Lie-Nielsen uses it, but they drive a screw against the edge of the shank, not its face.  This pushes the blade into the back corner of the body, essentially clamping it against a V-notch just like the diamond shank blades.  Preston, however, typically used a square shank with a collar that simply pulls the shank tight against its back face.

Lie-Nielsen’s square shank is driven into a corner with the brass screw mounted at 45 degrees.

The Preston router simply pulls the back face of the blade shank against the tool body.  It is not held in a V of any kind which can result in blade shift during use.

The problem with the Preston method is there must be clearance between the side faces of the shank and the notch in the body.  As a result, nothing constrains the shank except the friction between the shank and body which is produced by the collar.  During heavy cuts, the blade can shift laterally or tilt slightly, neither of which is acceptable.  For our design, we’re using the preferred Diamond configuration, but we are going to utilize Preston’s clever pin locator on the collar screw to keep the collar in position when loosened.

Next time, blade positioning.  It’s exciting stuff…

-WMT

by

In:Our Tools

Comments Off on WMT 2500 Router Plane- The Knobs

Various profiles and materials being tested for our router plane knobs.

Producing handles or knobs for any tool is a tricky thing.  Everyone’s hand is a little different as are their preferences as to what “feels” right.  It’s not surprising then that with the six router planes we studied the shape, diameter, and height of the knobs were all different.  Stanley, for instance, had the shortest and fattest knob while Millers Falls had the tallest and second narrowest.  Lie-Nielsen’s knob fell right in the middle of height and diameter and I would say theirs is the most balanced of them all.  Veritas, on the other hand, was the most unique with handles that tilt roughly 30 deg off vertical and were some of the tallest in the group.

The knobs on five different router planes, no two are alike.

The Preston 2500P knobs were unusual due to the fact that they are designed to be quickly unscrewed and moved to different positions on the tool (more on that in a later post).  The knob itself is not very tall, but its height ends up right in the middle of the other planes because of how the body is designed.  The diameter, however, is by far the smallest of the six measuring only slightly larger than 1.5″ where as the others average about 1.7″.  That may not sound like a lot, but you can feel the difference as soon as you put the tool to work.  This left us with a decision to make; remain as faithful to the original as possible or deliver what we think is the best all-around knob we can.  Ultimately we decided to leave it up to our customers.  We’re going to offer knobs that are replicas of the original as well as knobs based off the Stanley which are a little over 1.75″ in diameter and have a mushroom style profile.  The Stanley was our personal favorite among the all the profiles we tested so we wanted to make them available, but offering the Preston style has historical significance and will undoubtedly be preferred by some portion of the woodworkers out there.  We will also be happy to sell either style knob to those of you who may own an original Preston plane with knobs that need to be replaced.

An original Preston knob compared to the WMT version.

An original Preston 2500P outfitted with the Stanley-style knobs.  The original style are in front.

So that’s the story behind the knobs.  We haven’t finalized our material yet (feel free to comment on cherry vs. walnut), but we will be offering two styles which hopefully counts for something.  Next time we’ll discuss a few changes we’ve made to the original design and how that benefits the user.

-WMT

WMT will soon be releasing our newest tool, the No. 2500 router plane, which is based on the Preston 2500P.  Because there are so many details to cover on this tool we will be sharing a series of blog posts roughly once a week, each of which will cover one readily digestible chunk of information at a time.

I’d like to get the fundamentals out of the way up front before talking about the features and benefits of the tool compared to what already exists today, so lets get started.  First are the physical dimensions of the tool.  As far as we know, our router plane will have the largest footprint to ever hit the market.  When studying several new and vintage planes, most of which are based on the Stanley No. 71, their soles ranged in width from 5-5/8″ to 8-1/4″ with the average measuring about 7-1/2″ wide. However, these planes all have soles that are longest in the center and then diminish as you get towards the outside edges of the tool.  This makes the tool less useful when straddling a large surface, such as leveling the face of a tenon.  The length of the sole on the Preston, which measures slightly more than 8-1/4″ wide, remains constant over its width (aka: a rectangle).  The sole of our router plane was bumped up to an even 8-1/2″ x 3-1/2″.

The Preston 2500P body compared to the widest 71-style we found, this one from Millers Falls.

The Preston body compared to the narrowest body from Veritas which measures only 5-5/8″ wide.

And while some may think a small sole is no big problem because a secondary wooden sole can be attached to most planes making it any size you want, you’re correct… sort of.  A secondary sole is one more thing you have to make and you need to keep it as thin as possible so the tool’s depth of cut isn’t greatly reduced.  However, a thin secondary sole that isn’t well supported will deflect, which can make the cutting action of the tool range from problematic to useless.  By having a large rectangular sole, adding a secondary sole isn’t as necessary, but when it is desired it is well supported even at a minimum thickness.

The next detail is one of the thing’s we’re most excited about: offering the tool in manganese bronze.  Again, as far as we know, this is a first among router planes.  The bronze not only looks fantastic, but there are the added benefits of extra weight (this will be the heaviest router plane ever sold) and zero concerns when it comes to corrosion.  It was not easy to find a suitable foundry for casting this tool in bronze, but persistence paid off and we’re proud to make it our mainline offering (we may or may not offer ductile iron in the future).  The non-bronze components will either be brass or stainless steel, with the one obvious exception of the cutter which will be O1.

One final detail I’ll throw in is our removal of one part of the original Preston design.  The doo-hicky (that’s its technical name) on the front is quite confusing in appearance as well as function.  It is comprised of a small casting which can move front-to-back in a pair of slots and is locked down with two small screws.  Once locked down, a threaded post can be raised or lowered, then locked in position.  I figured this could be used as a crude depth stop, but then why make it adjustable front-to-back?  I emailed Paul Sellers about this as he’s a big proponent of the Preston style router (and if you don’t follow his blog I’d recommend it) and he said it was designed as a guide when running the tool in a recess to prevent the cutter from gouging the side wall.  I still don’t understand why it needs to slide a fraction of an inch in slots though… possibly as a throat-closing device of some sort as I read some speculate online, but this seems like a poor way to go about it and downright unnecessary.  The added cost and tools required to make an adjustment made it hard to justify keeping in our version of the tool.  It also blocks visibility and isn’t included in Preston’s 1399P model router, so we decided to eliminate it.  If you’re wondering why ours is a model 2500 and not a 1399, it’s because we are including the adjust fence which was never available on the 1399P.

The awkward adjustable gizmo on the Preston 2500P.

That’s all for now, but we still have knobs, cutter configuration, cutter orientation and more to discuss in the following weeks so stay tuned.  And as a status report, our patterns are being made and hardware is being prototyped.  We should have the hardware within a week, but the patterns will take roughly a month to complete.  Then we’ll get our first look at the castings.

-WMT

by

In:Our Tools

Comments Off on What have we been doing lately?

It’s been a while since we’ve posted anything on our blog.  Why?  Because when you’re just filling orders and sorting out details with manufacturers for a new tool there just isn’t much interesting work to blog about.  Well that’s about to change.  We are on the verge of beginning production of our new router plane.  Final drawings have been sent to the foundry for review and other prototype hardware is on order.  It will be roughly two more months before prototypes are finished, then another month or two before we can start filling orders, but at least the tedious work is behind us and now the fun can begin.

Where has a lot of our time been going? Basically, right here.

In any event, be prepared for several blog posts in the near future outlining the details of our router, how it compares to other models (modern and vintage), and when it will be released to the public.  We are also planning to attend a few Lie-Nielsen Hand Tool Events in early 2016 and we’ll be sharing more about those as well.

So stay tuned and our apologies for the blogging hiatus… I think it will be worth it.

-WMT

Jul 30

WMT on TfWW

by

In:Our Tools

Comments Off on WMT on TfWW

Walke Moore Tools now has distribution of some of our tools through Tools for Working Wood.  We’ve been a big fan of these guys for some time, their holdfasts are particularly noteworthy and they’re the only kind I use in my shop.

Our stuff can be found here and here.  Thanks to TfWW for making this happen.

by

In:Our Tools

Comments Off on Magne-clips for Winding Sticks

For some time we have been considering various ways to clip our winding sticks together for storage purposes.  Some traditional designs use a peg-in-hole method where one stick has two pegs protruding out of it and, you guessed it, the other stick has matching holes.  Fit the pegs to the holes and the sticks hold each other reasonably well.  We weren’t crazy about this design for two reasons:  it’s not very attractive (in our opinion) and as the pegs and/or holes wear, their hold becomes less effective.  We also considered some classy leather straps or end caps, but the added cost was a deterrent, as was the bulk it would add to an otherwise narrow set of sticks that would typically to be stored in a tool chest or on a shelf.

In the end, we designed our own method of holding the sticks together using rare earth magnets.  Each stick gets a pair of magnets set just below the woods surface.  The back of the hole is filled with a matching face-grain plug that typically goes unnoticed (unless you’re looking for it of course).  The end result is a pair of winding sticks that looks as clean and beautiful as our standard pair, but put the faces together and they hold each other with just the right amount of force.  (check out a brief video here)

Enjoy, -WMT

by

In:News, On the Road, Our Tools

Comments Off on WMT at Woodworking in America 2014

 

 

 

In just a few days WMT will be on the tool floor of Woodworking in America.  This is our first public event with a fair amount of preparation leading up to this point, but we’re excited and will be sharing a booth with some other premium tool makers who are also relatively new to the woodworking world.  We will be side-by-side with Sterling Tool Works and Texas Heritage Woodworks with several other makers very near by such as Blue Spruce Toolworks, Vesper Tools, Scott Meeks Woodworks, Plate 11 Bench Co. and the list goes on.  So if you’re at the show be sure to stop over and say hi.  We’ll have some tools available for sale at the show, other new tools and prototypes to try out and pre-order, and all unfilled orders placed at the show will ship for free.  Hope to see you there.

-WMT