Author Archive



Comments Off on 2019 Router Update

2019 will be a busy year for us. We are ordering several hundred router castings and have other plans in the works to help scale up production. However, we have a huge backlog of people interested in ordering and it’s going to take several months before we have more routers.

Rather than give a lot of behind the scenes info the short version is this: we aren’t taking pre-orders or continuing a waitlist of any kind. We will use the next several months to ramp things up on our end and as we start to see more tools on the horizon we will let people know. And when we do bring them back online it will be in much higher quantities.

Until then, wish us luck and we appreciate your patience.Cheers



Comments Off on Next batch of routers…

More routers will be listed for sale on Saturday, December 8th at 12:00 (noon) Eastern Time USA.  As always, quantities are limited and they will sell out very fast, so if you’re interested be ready to pull the trigger as soon as they’re listed.

Good luck, -WMT


In:In the Shop, News, Our Tools

Comments Off on One Last Router Update

The Return of the Router

It’s been a long time coming, but we’re finally filling up the pipeline and getting back into production with our 2500 Router Plane.  After two years and three foundries we’ve got everything to a point where we can move forward with a low rate of scrap and high rate of confidence.  Routers may contain minor pitting on the sole of the tool, but it ranges from very minor to none at all.

Examples of the pin-prick type pitting we see on some routers.

A close-up look at the sole with pitting present.

Going forward, we’re ordering much larger quantities of raw castings from the foundry, but it’s going to take a little time to get those in and start the regular routine of machining parts, assembling, and posting on the site.  Another thing we want to make people aware of is a slight change in the router options and pricing.  To date, we’ve only sold routers with polished edges.  This is a classy look that we want to continue to offer, but for a variety of reasons it’s more costly than we initially expected.  Therefore, in order for us to continue offering polished routers we need to raise the price from $290 to $315.  As an alternative, however, we are also going to be offering a matte version of the router for $285.  The routers are completely identical in every way with the exception of the polished edges.

The WMT 2500 Matte Router

The polished vs. matte router

A more detailed shot of the polished vs. matte finish router

Finally, we want to sincerely thank everyone for their patience and support (be it via emails, Instagram posts and comments, or conversing with us directly) over the past few years while the development was going on followed by all the casting issues.  We know it’s been a long wait.  No one wants to get these out into the hands of woodworkers more than we do and we’re extremely excited to finally make that a reality.



In:In the Shop

Comments Off on #KIDDWRCKBENCH part 3

The 3rd, final, and long over-due post on the building the kid’s workbench is finally here.  Picking up where we left off, the vise still needs to be fit to the base.  It’s made from the Benchcrafted Hi Vise kit and installation is best accomplished by downloading and following their instructions.  I needed to add a block to one leg to house the crisscross hardware, but the rest is fairly simple.

The base, vise chop, and top in their unfinished, unassembled state.

After the vise was installed, I let the girls take it for a test drive.

Ava takes a shot at edge planing.

Evelyn’s plane of choice is the violin maker’s block plane by Lie-Nielsen… Olivia is there to supervise her work.

Onto the finish work.  For the base, I painted it with 3 coats of Federal Blue milk paint, then a coat of Watco Danish Oil over that.  The top got a few coats of wipe-on poly.

First coat underway.

Base and vise nearly finished.

Finally everything got assembled, the lower shelf boards (which are tongue-and-grooved) were added, and the bench now sits next to my own where my 3 daughters can use it whenever they like.  This was easily one of my favorite builds to date for obvious reasons and for those of you considering something similar for your kids, I hope this provides some inspiration.  And for more pictures and info, you can look up the #kiddwrckbench on Instagram.  Cheers.

The completed bench

Lower shelving details

Finished bench in action.


In:In the Shop

Comments Off on #KIDDWRCKBENCH part 2

With the base pretty well buttoned up, it’s time to move onto the top.  The construction isn’t too tricky, but there are a few details to be aware of in order to avoid a catastrophe.  So let’s get into it.

Start by gluing up some 8/4 stock into a panel that’s about 14″ wide by however-long-your-bench-is… in my case it was 48″.  That will act as the main surface.  You will also need an 8/4 board ~5.5″ wide to act as the front apron of the bench.  Now prep the two end rails which are 1″ thick x 20″ long x 8/4″ wide (to match the bench thickness).  Finally, the rear rail is 3/4″ thick x 48″ long x 8/4″ wide.

Main bench top surface getting glued up.

When all the components are prepped to size, flat, and square, you have a choice to make: you can either move onto the bench assembly and add the dog holes later on or add them now.  Adding them now (which is what I did) is easier as the components are still manageable on a drill press, but you need to make sure your layout is precise relative to the location of the legs on your base.  Otherwise, you may have holes that get blocked which make them useless and looks sloppy.  So plan ahead and be careful.  If you wait until everything is assembled, you can virtually guarantee you’ll clear all the base components, but it takes more effort to ensure the holes are perpendicular depending on your methodology for drilling large holes without a drill press.  It’s your call, do whatever you feel most comfortable with.  Regardless of when you drill them, add hefty chamfers around the holes so they don’t blow out when you’re flattening the bench top.

Components getting prepped and drilled, nearly ready for assembly.

The next step is fitting the end rails to the top surface.  There’s a few things going on here, so bare with me.  First, it’s going to be a breadboard-style end cap, meaning part of the bench top gets milled off each end to create a full width tenon.  A matching groove gets placed in the end rail, but the rails extend beyond the back of the main surface to capture the rear rail, so it has to be a stopped groove.  This helps keep the bench top flat (which is the whole reason breadboard ends are used in table construction), but also provides a method of attaching the end rails to the bench so that they can reach to the back of the bench and secure the rear rail.  Additionally, there is a dovetail feature cut into the front 1″ or so of the bench top tenon and again, this gets a mating feature cut out of the front of the end rails.  The dovetail needs to be just slightly larger than the breadboard tenon in order for things to assemble properly.  This feature gets repeated in the back of the end rails as a means of attaching the rear rail.  This all sounds a bit confusing to read, but you can check out a drawing of the end rails and review the pictures below to help fill in the blanks.

Cut the breadboard tenon short, leaving material for the larger dovetail key at the front face. Lay out the dovetail and cut it out by hand.

Run the groove through the end rail to match the breadboard tenon, slide it over the tenon and butt it up against the back of the dovetail key. Then transfer the dovetail over to the end rail and cut it out like you would for any other half-blind dovetail. Repeat this process in a similar fashion for the rear rail (shown here) by cutting the tail on the rear rail first, then transferring it to the end rails.

Chiseling out the remaining waste in the dovetail socket.

When the bench top, end rails, and rear rail are finished, there’s one more detail to discuss… glue.  You can’t simply glue everything together because the top needs to be able to expand and contract and gluing the end rail directly to the top will prevent that, leading to self-destruction.  So dry-fit the end rails onto the bench and clamp them tight against the top so there are no gaps where they meet the bench top.  Drill 1/4″ holes through the bottom surface of the end rails every 2″-3″, but stop them a little short of piercing through the top. (You can drill them straight through, but then you’ll see them on the top surface and I chose to leave them hidden, but it’s just a cosmetic choice, so it’s your call).  The holes should be centered on the tenon.  Next, remove the end rails and file the 1/4″ holes in the tenon into 1/2″ slots.  Now you’re ready for assembly.  Start by gluing the end rails to the top, but only use glue on the dovetail key.  This will lock the front edge in place (more on that later) and all the expansion will shift the bench towards the back.  Then drive 1/4″ dowels through the holes to pin the breadboard end to the top.  Because you added the slots in the tenon the top can slide as necessary while still keeping the end rails tight.  No glue should be used anywhere in the breadboard tenon area.  Don’t even use glue for the 1/4″ pegs until they’re almost completely seated.  A bit of glue in the final 1/4″ or so will keep them from backing out while preventing glue from getting in the joint itself.  Now you can glue in the rear rail and when its dry, flatten everything so you’re left with a 20″ x 48″ bench top with a rectangular hole in the back.

Completed breadboard end rail with dovetail key.

Adding chamfers.

The final step is to glue on the apron. Remember that we put glue in the dovetail key, so the front edge of the bench is treated as our stationary datum.  wood expansion is going to move away from that corner, so it’s perfectly acceptable to glue the apron on over the entire length of the bench, including the overlapping cross-grain in the corners of the end rails.

Front apron glue up.

After the glue dries, make sure the apron is flat and square to the bench top surface.

Final bench top with finish applied.

With the top complete, all that remains is adding the 1/2″ thick bottom panel for the tool tray.  Nothing special here, it just gets screwed into the bottom of the bench surface.  This is preferable to capturing it in a groove because the bench is only ~1.8″ thick after milling, so it’s not a terribly deep tool tray.  Trapping the bottom surface in a groove would only reduce this depth further and it would be impossible to replace the panel should it ever get cracked or otherwise damaged.

Laying out the bottom panel. You can also see the location of the breadboard pegs running through the underside of the bench.

Pre-drilling all the screw holes to secure the bottom panel.

And that does it for the top.  In the final blog entry I’ll cover the vise chop and hardware installation, assembling all the components, and painting the base.



In:In the Shop

Comments Off on #KIDDWRCKBENCH part 1

One of my daughters breaking down lumber for her future bench.

I have kids. 3 of them. All girls. They all enjoy spending time in the shop with me and as they’ve grown, their interest in using tools and building things has taken off.  I would occasionally set them up on my bench with some tools, but everything is too big for them and watching them plane wood while sitting on top of the bench and the board they’re trying to plane was just sad. So for a year or so I started thinking about what kind of bench to make them, but I couldn’t figure out what type of vise to get.  Ideally it would be a seriously functional vise, but move smoothly and easily enough for a 4 year old to use.  I didn’t make much progress until Handworks 2017 when Benchcrafted did a kid bench giveaway using their scaled-down vise hardware as a front vise (the hardware is normally used in their portable HiVise product).  Seeing that vise was the missing link for me, so I bought the HiVise kit and started designing my kids’ bench when Handworks was over.

The BenchCrafted kid bench from Handworks 2017.

In the end, my design was based around the bench from Charles Hayward’s The Woodworker Vol. 4, the same design Benchcrafted used for their giveaway bench. By that I mean it’s a bench with a tool tray and lower shelf, front vise but no tail vise, and a front apron with dog-holes for supporting wood (as opposed to a sliding deadman). There’s a variety of ways to incorporate these features into a bench ranging from fast and simple to more complicated and time consuming… I’m making this for my kids and want it to be something that expresses how much they mean to me, so naturally I opted for the complicated and time consuming route. That’s not to say the extra effort is just for show, there’s a lot of logic driving most of the decisions I made so without further adieu, let’s get into it.

The Plans

This was my first draft of the bench, final version available for download below. I don’t usually go into nearly this much detail on my plans, but with a bench it’s easy to misplace a dog hole or mortise location and suddenly things won’t assemble correctly.

I designed my bench to ideally fit a ~7-8 year old and uses almost exclusively 8/4 lumber.  It’s smaller than the bench made by BenchCrafted, but I think it’s a good compromise for my kids.  It’s not so tall that a 4-5 year old couldn’t use it, but not so short to prevent a 10-11 year old.  After that, I plan on either shimming the bench up a few inches or transition my kids over to my full-sized bench.  If you’re interested in making this bench, the plans are available here for free.

The Base I knew from the beginning that my kids’ bench would have a painted base. Our WMT travel bench (which is also my daily user) has a black base painted with milk paint and I love it. It’s also what my kids are used to, so they just expected their bench to have a painted base. Given the painted finish, I didn’t use a more expensive wood (like Maple) nor an open-grain wood (like Oak). My preferred lumber of choice for this kind of situation in Poplar. It’s readily available, inexpensive, cuts well with machines or hand tools, and looks great when painted. So with the wood selected, I got it milled square and to size so the joinery could begin. The base is assembled with drawbored mortise and tenons. I typically make the mortise first, hogging out most of the waste on the drill press and then cleaning it up with chisels. The tenons were roughed out on the band saw with the fit being tuned via a router plane until it fit the mortise perfectly.

The pile-o-lumber for the base awaiting joinery.

Lay out the mortises referencing off the same face. This can be done with 2 different gauges or a dual mortise gauge like this one from Veritas.

The tenons were roughed out on the band saw and refined using a router plane until it just presses into the mortise using hand pressure.

The joints in the back of the base were a little tricky because they aren’t square, but angled. For these, it was faster to just do everything by hand.  I laid out the angles and locations, cut to my lines with hand saws, and again tuned the fit with a router plane.

Cutting the angled tenon shoulder.

Cutting the angled tenon cheeks.

With all the joinery cut, the prep for drawboring can begin.  If you aren’t familiar with drawboring, it’s basically just sending a wooden peg through a hole that’s drilled through the mortise walls and tenon to pin the joint together. The one trick is you don’t just drill a straight hole. First, drill the hole through the mortise, then insert the tenon and mark the hole’s center location to the tenon and remove it. Now, shift that center location toward the shoulder by a small amount (~1/16″), the exact amount can vary based on wood species and the size of the joint. Reinsert the tenon and you’ll see the hole from the mortise is offset from the hole in the tenon. Now when you pound your wooden peg through the offset holes, it tries to pull the tenon deeper into the mortise.  This pulls the joint extremely tight at the shoulders and locks the peg in place, even with no glue everything would stay locked in place. Now go ahead and add glue to the mortise and tenon, assemble the joint, and pound the pegs through. Note, the pegs should be tapered at their ends so they can snake their way through the holes and if you have drawbore pins (aka, just a tapered rod) you can twist that into both ends of the hole before inserting the peg which also helps ease the path of the peg through the offset holes.

Pounding wooden pegs through a dowel plate brings them to a precise final diameter.

After drilling the hole through the mortise, insert the tenon and mark the hole’s center location with a transfer punch.

A drawbore pin gets pressed and twisted into the hole from both sides before pounding the peg through. This crushes some fibers and helps smooth the path of the peg through the hole.

After the pegs are driven home they will get cut off on each side with a flush cut saw. Notice the pointed tips of the peg.

Getting the base glued up and drawbored.

After the base is assembled, there’s a few final details before it can get painted. First, there’s a few cuts at the top of the front legs that the bench top apron will sit in and an extra block gets glued to the left leg that’s necessary for mounting the vise hardware, but I feel that’s best left until the bench top is finished. Then use the top itself to locate those cuts, otherwise you’re asking for issues. You can cut the feet flat at this point and if you haven’t done it already (which I hadn’t) you can drill the holes through the top stretchers for the bolts to pass through which will attach the top to the base. Finally, add all your chamfers or whatever edge detailing you like and you can move onto the top which is what I’ll cover next time.

Until then…



In:In the Shop, Vintage Tool Talk

Comments Off on Restoring a Miller’s Patent Plow Plane

A little while back I acquired a Miller’s Patent plow plane, near as I can tell, it’s a model No. 43 Type 5.  It came with 3 cutters and was in good shape overall, but I felt like it could use a little attention before I put it to work. Here’s a quick summary for those who may be looking to restore a similar tool.

The tool as I received it

As shown, the tool is in decent shape, but the body is grimy, the handle is dirty, and the brass components are dull and worn.

One more picture of the tool before I began cleaning it up.

Before the restoration can begin, one of the most useful things to do is disassemble the entire tool.  This reveals several details that may have otherwise gone unnoticed: a cracked part, a missing screw, a mechanism that’s corroded and no longer functioning properly, etc.  If you do nothing else with a new-to-you vintage tool, take it apart, verify everything is there and working properly, and put it back together.

A plow plane in pieces.

One area to pay special attention to with a plow plane is the chip deflector.  This part not only provides the downward clamping pressure on the cutter to hold it in place, but also sends the shaving being cut out of the tool and away from the user.  If the face of the deflector is dented, rough, or has any kind of tacky residue on it, the shavings may not flow out as they should and could get jammed up in the tool which can be annoying.  I used a smooth, half-round file to remove some of the dents and burrs, then smoothed the face with fine sandpaper.


…After (apologies on the out-of-focus photo)

Next, I had to address the depth stop.  This was pretty badly worn.  There are two critical surfaces: the face that touches the body and the bottom face that ultimately touches the work when the final depth has been reached.  These two surfaces need to be flat and perpendicular to one another.  As you can see in the pictures, they were not.  I lapped them on with sandpaper on a granite surface plate, checking for flatness and perpendicularity as I went.

This face gets clamped against the body. It should be flat, but clearly has a deep hollow in the middle.

The bottom surface also needed to be re-flattened. Additionally, I eased the edges when I was done to ensure no sharp corners would scratch up my work when the depth stop makes contact.

After addressing the few functional issues above, I took all the small brass and steel bits and threw them in my tumbler for a few hours to clean them up.  This gave everything a nice, uniform finish and removed any remaining grime from the parts.  Steel parts were oiled to prevent rust.

I didn’t do much with the body, just a quick cleaning and scrubbing to brighten it up.  This, along with a bath in Evaporust went a long way to making it look new(ish) again.  Finally, I lightly sanded the handle and hit it with some Watco Danish Oil to freshen it up.

The result of my modest efforts were well worth it. I debated re-painting the body since most of the original japanning had worn off, but decided to leave it alone.

…and a shot of the other side.

Detailed shot of some of the brass bits. Nice.

With the tool brought back to glory, I sharpened up the cutters and took it for a spin.  The results are excellent.  These tools can take very aggressive shavings compared to most because the grooves are typically narrow (1/4″ – 1/2″ wide).  A narrow shaving means low material removal and low push-force, so the cut can be a lot deeper to compensate.  These are also not cutting a show-surface, so some tear-out on the inside of the groove isn’t a concern.  This style plow doesn’t even have a depth adjustment for the cutter. Why not?  Because it doesn’t matter and it’s not critical.  Just sight the distance the cutter is projecting by eye and lock it down.  If you really set it too heavy or too light, one quick re-adjustment is usually all it will take to dial it in.  The point being, it’s a PLOW plane, plow through the work with the heaviest shaving possible.  If you do, a typical groove can be completed in under a minute, maybe 2-3 if it’s a longer board and/or harder material requiring a lighter shaving.

Testing the plow for a 1/4″ groove.

And the results.

Overall, this was a pretty minimal restoration, more of a basic tune-up and cleaning, but it pays dividends in the long run.  Next up, a few posts on making a work bench for my kids.  Cheers.

In our previous post, we discussed using other manufacturer’s cutters in our 2500 router plane.  Why would you want to use another manufacturer’s cutter?  Because right now we only have one size, 1/2″ square tipped.  We may offer a spear point, possibly one other size like 5/8″, but that may be a little while and we currently have no plans to offer the wide range of sizes companies like Veritas produce.  Fortunately, it is possible to use many other cutters in our router… unfortunately it requires a permanent modification to that cutter: adding a secondary notch.

Adding the second notch isn’t hard, but take your time and check the fit often.

The reason for this second notch is simple; without it you won’t be able to take a cut less than 1/2″-1″ deep depending on the cutter you’re using.  That’s not good considering almost any cut you’d want to make with a narrow blade will tend to be very shallow.  (This is usually where people ask why we didn’t just make the threaded posts taller like other router planes… it’s because the 2500’s cutter can move to the side positions and a taller post would stick up through the handles, so they have to be somewhat short.  This is true of the original Preston design as well.)  So, by adding a secondary notch you can use many other manufacturer’s blades.  Lie-Nielsen is a no-go because they use a square shank, but any diamond shank measuring around 3/8″ square should fit.  To make this notch you will likely need to use a Dremel tool with a grinding wheel which can be further refined with diamond files if you have them.  Standard files won’t work (at least not on Veritas’ cutters) as the shanks are heat treated.  Work slowly, keep the notch as square as possible, and check your progress frequently.

A variety of cutters, from left to right: a vintage Record, an unaltered Veritas, the WMT cutter, and finally a modified Veritas.

The notch is technically 0.155″ tall and 0.130″ deep, but that doesn’t really matter.  What matters is making it just tall enough to fit around the depth adjustment nut and deep enough that it won’t bottom out on the adjustment nut.  There should be clearance all the way around the nut when installed and clamped down.  The position of the notch is about 0.8″ below the top notch, but that’s on the Veritas cutter.  It may differ on other cutters based on how tall the shank is.  Basically make the notch such that the adjustment nut keeps the cutting edge of the blade slightly above the sole of the tool (so no cutting occurs) when it’s at it’s maximum height.  Then as you lower the nut, you start to take a cut which naturally gets thicker as the nut drives the blade lower and lower.  When you bottom the nut out on the body of the tool, you should be able to move back to the upper notch and continue.  It’s a good idea to layout the notch and check all these positions before actually cutting the blade.

Location of the second notch, just under 13/16″ below the upper notch for a Veritas cutter.

This vintage Record cutter would also work well in the WMT 2500 router.

Now for a few important notes, disclaimers, etc.  The most obvious thing to state here is you’re modifying these cutters at your own risk.  Second, the Veritas cutters neck-down on the shank width fairly high up which means you aren’t getting the usual amount of support for the cutter when it’s clamped in the tool.  As a result, you may find it doesn’t align perfectly straight every time or can shift if pushed on hard enough.  For me, this has been a minor inconvenience at the most.  I make sure the blade is straight as I clamp it in place, if it’s not I simply turn it slightly with my fingers until it looks good, then clamp it down.  At that point it shouldn’t shift.  Yes, it’s possible if you push on it sideways with high force, but small blades are typically only going to see light forces and usually take them head on, not side ways.  Finally, you obviously can’t rotate the cutter 90 deg in the side positions simply by adding a notch.  This is true, but I would ask why would you want to?  Smaller cutters are generally for smaller work so using it in the standard middle position is ideal.  For larger sweeping cuts where the 90 deg rotation is desirable, use our cutter.

Note the narrowing effect of the Veritas cutter.

This is roughly the starting point for the blade where a flush cut would be taken. Notice how there isn’t a lot of supporting material on the shank to align the cutter in the V-groove.

The narrow cutter installed with the added notch. Not too shabby.

And that’s all there is to it.  A small change to cutters many of you probably already own or can purchase at a reasonable price and routing in any sized area becomes nbd (that’s “no big deal” folks).



In:In the Shop

Comments Off on Tripod Accessory: The Boom Arm

After making the phone clamp to mount my phone to a tripod I decided to add a boom arm as well.  This is extremely useful for top-down shooting, reaching over the bench for videos, or just keeping the tripod farther away so I don’t kick its legs while I’m working.  The arm is 30″ long overall and has an effective reach of about 24″.  There isn’t much to cover in the general design of the arm.  I used one brass insert, installed in the same manner that was described in the phone clamp post.  The slots along the arm obviously allow the clamp to get positioned anywhere over its length.  One detail worth mentioning is what I call the “head” which is to one side of the brass insert vs. the “arm” which is on the other.  You’ll notice I left the head large (about 6″ x 2″ x 3/4″) where as the arm gets thinner, narrower, and has the slot material removed.  This is to allow the head to counterbalance the long reach of the arm.  It’s not perfectly balanced, but it helps a lot. I can add the weight of the clamp and phone all the way to the end of the arm and things stay nicely in place, however I am considering adding a brass weight to the head to improve the balance further.

Roughing out the shape of the arm.

Brass insert installed, holes added to define the ends of the slots.

Slots roughed in, ready for a test drive.

Tripod mounting plate installed on the boom arm.

Testing the arm before final clean up and finishing.

Close up of the test shot.

Completed boom arm in Sapele, finished in Watco danish oil.

Finished shot of the arm and slot details.

For now I used a simple 1/4×20 Allen head screw with a knurled head to attach the clamp. It’s a bit small, but I can use it as a thumb screw, no need for an Allen wrench. Eventually I may switch to a proper thumb screw with a larger head, but this works well enough for the moment.

Detail shot of the underside of the arm.

These two simple accessories have already made things so much simpler in the shop for shooting pictures and especially videos.  Each one took only a couple hours to make so if you’re doing a lot of phone/camera juggling in the shop take some time and make these two pieces.  Or don’t.  This is America people, what you do in your shop is your business.

Cheers, -WMT

I recently got around to making some accessories for my tripod (a phone mount/clamp and a boom arm for said clamp) to make life easier when shooting video in the shop.  I’ve wanted to do this for about a year now, but only just got around to it.  After sharing some pictures via Instagram I got several requests for selling or sharing plans for these two accessories, but we’re not in the phone/camera business so we don’t plan on selling them.  We are in the hope-this-makes-your-life-better-for-free business, however, so enjoy.  This first post will cover the phone holder (a.k.a. clamp) that mounts the phone to the tripod.  The next entry will cover the boom arm attachment.

Disclaimer:  If you make a phone holder/clamp like ours be aware there’s nothing to stop you from cranking down on the nut and cracking your screen… use common sense because we won’t be replacing any phones.

The holder is based on our Drawer Slip Clamps and uses one standard set of stainless steel hardware.  The jaws are 4″ long and 3/4″ thick just like our clamps, but to hold the phone they were made wider at 2″ (this was to hold an iPhone 6s, your phone may be different so size the width accordingly).  Brass inserts were installed in the bottom and end of the clamp for the tripod attachment plate and a 3/4″ notch was cut out of the sliding jaw to provide access to the Home and Photo button on the phone.  Finally, some thick leather was glued (I used contact cement) on the ends of the jaws to provide some extra grip and cushion.

The fixed jaw gets drilled and tapped to receive the threaded rods. The tap table keeps everything perfectly perpendicular.

With the sliding jaw roughed out, two clearance holes were drilled for the threaded rod to pass through, then a 3/4″ hole was bored out for access to the Home button. After drilling the hole, cut through to the end to form the U-shaped notch.

I don’t love brass inserts and avoid them when possible, but this application was well suited for them. To install the inserts accurately, I threaded a 1/4-20 post into the insert, then jammed a nut against the insert to lock everything in place…

Next, I chucked this assembly into the drill and applied downward pressure while turning the chuck by hand. This kept the insert from threading in crooked.

The inserts installed cleanly, but I left the split portion proud of the jaw so I could grind it flush. FYI- if you try to use a flathead screwdriver to install the insert you will likely snap it.

The completed clamp, inserts ground flush.

The U-notch allows access to the Home button and Photo button.

Final product, made from Sapele and finished with Watco danish oil.

Close up of the leather padding.

This is the standard camera attachment piece that comes with most tripods. The 1/4×20 screw normally gets threaded directly into the bottom of the camera, but phone’s don’t include that feature… hence the reason for this build.

Here’s the basic setup. The tripod’s attachment piece screws into the clamp via the brass inserts. The clamp holds the phone, and this entire assembly gets mounted to the tripod.


There you have it, the phone mounted to the tripod.

Put out a camera, my daughters instantly strike a pose.

The 1/4×20 inserts can also mount directly into desk-top tripods, double bonus.